This is the fifth part in an eight-part series on the future of transportation. New articles published every Monday.
We have a good idea of what the near-term future of transportation will look like: hybrid vehicles, like the Chevy Volt; electric cars, such as the Tesla Roadster; the rickshaw-cum-Segway known as the General Motors P.U.M.A.; and high-speed train systems that operate using magnetic levitation.
But where are our flying cars, our hover boards, and our teleportation machines? According to Back to the Future II, we should have the first two by 2015, but that's obviously not going to happen. Furthermore, scientists tell us we should focus more on beaming little bits of information rather than whole humans.
So, can we expect any cool, borderline sci-fi vehicles in the future?
"Society and mobility is going to transform quite a bit over the next 50 to 100 years," predicts Mark Moore, an aerospace engineer at NASA's Langley Research Center in Virginia. He adds that there are five practical considerations to take into account when designing the transport of the future: efficiency and environmental friendliness, community friendliness (meaning that it doesn't make a lot of noise), safety and reliability, ease of use (meaning that it should be semi-autonomous or as easy to use as a car), and, of course, affordability.
"In the 2030s, we will have personal flying vehicles that use nano-engineered microwings," the well-known futurist Ray Kurzweil told GOOD a year ago. We aren't sure about that, but here are some other seemingly bizarre concepts that could usher in paradigm shifts in how we get around.
Deus Ex Machina Wearable Motorcycle
Bumsuk Lim, a transportation design professor at Art Center College of Design in Pasadena, California, demands that his students focus on how to move people and goods from point A to point B in an urban setting. One of the concepts borne out of that elegantly simple directive is Deus Ex Machina, designed by former student Jake Loniak. Part exoskeleton, part motorbike, the three-wheeled vehicle runs on lithium-ion batteries boosted by ultracapacitors (which offer better acceleration). Worn almost as a jacket, machine is steered via "muscles" mechanized by pressured air and activated by the driver's gestures. The Deus Ex Machina is projected to top out at 75 mph and is meant to be a sports model among wearable vehicles (note the lack of storage). The concept, Lim says, "solves some of the fundamental mobility issues, but is still the kind of exciting vehicle that people are like, 'I want to try that. I want to go to work in that.' You can't forget the emotional link between the buyer and the vehicle."
When we'll see something like Deus Ex Machina: Lim won't speculate on a time frame, but noted that when gas hits $10 per gallon, we're going to be looking for radically different ways to get around.
NASA PuffinPersonal Air Vehicle
Did you know that the average person is willing to sit in a car for up to 1 hour and 15 minutes before he or she becomes frustrated? That's what NASA's Moore says, explaining a concept called "mobility reach." Since an automobile averages 33 miles per hour, that will allow you to travel just over 40 miles before you hit that threshold. In a personal air vehicle, however, which NASA engineers estimate will travel four times faster, you'll travel more than 160 miles. That could mean a future when people live more than 100 miles away from their offices. It's called "on-demand aviation," allowing you to travel door-to-door, rather than gate-to-gate, says NASA's Moore, noting that another important facet of future transport vehicles will be the ability to give their users the same personal space we have come to expect from a car. The one-seater Puffin stands at rest vertically, sitting on its tail. When in flight, its user lies in the prone position. Its two propellers are powered by electric motors, which are 94 percent efficient (roughly three times more than conventional mechanical engines). The Puffin is just a small step on the road to an idealized personal aerial vehicle. The next iteration, known as the Samarai, is a two-seater about the size of an SUV with eight rotating blades that make it look like a food processor.
When we'll see something like Puffin: "I think the next twenty to thirty years are going to be incredibly exciting for aviation," says Moore, adding that soon flying will "map into people's daily lives."
Tubular Rail
Robert Pulliam, the inventor of Tubular Rail, is fond of saying: "We're not changing fundamental technology; we're just reorganizing it." He's not kidding. In his new train concept, electrically motorized wheels are a "track," and the rails are notches on the train. Based on the principle of a cantilever beam-the very same tenet that keeps Frank Lloyd Wright's Fallingwater from disappearing into a Pennsylvania waterfall-the train glides like a javelin through a series of rings that effectively hand the train from one to the other. According to Pulliam, for a train that's 400 feet long, the rings (each equipped with an electric motor that powers wheels that propel the train) need to be spaced 100 feet apart, so the train is always in contact with three rings and will stay perfectly level. The major cost benefit of Tubular Rail is that it obviates the need for tracks and the space requirements necessary to build them. Pulliam notes that cost for a mile-long Tubular Rail system would be one-quarter that of a comparable light-rail track and two-thirds that of high-speed rail. He sees applications for the trains, which he estimates can hit a speed of 150 mph, for either commuter purposes or as an alternative to high-speed rail. A team of engineering graduate students at Dartmouth's Thayer School of Engineering has already vetted his designs, looking for a fatal flaw (which it didn't find). "Our design would be priced as a much lower-cost system, and the frosting on the cake was that it was easy to install, it didn't take up a lot of land, and it was safer-in that the train was separated from cars and trucks."
When we'll see something like Tubular Rail: Texas A&M donated Tubular Rail a parcel of land in east Texas to build a two-mile system. The company needs $30 million to build that proof of principle.
Space Elevator
We can thank the late Arthur C. Clarke for planting this idea in people's heads. As it turns out, there's some technical merit to it. Imagine the string that connects a tetherball to its pole. If the pole is rotating at a constant speed, the ball will essentially orbit it, and the string will be pulled taut. That's the theory behind the space elevator. A cable made constantly taut by the earth's rotation could connect an orbiting satellite to a launchpad in one of the Earth's oceans. A 13-ton payload of people or equipment could then use that cable to make the one-week journey into space. The ribbon would be made of carbon nanotubes, an electricity-conducting material that is stronger than steel. The process of making a cable out of these building blocks, which could accommodate an elevator, is still science fiction, but research into nanotubes is progressing at breakneck speed. The elevator could be powered with a laser shot from the surface at photovoltaic cells below the car, which would create electricity to power the device until the vessel leaves Earth's gravitational pull. (A counterweight could also be used to help the climber up the cable.) Physicist Bradley Edwards told the PBS program NOVA scienceNOW that a space elevator could reduce the cost of putting a payload into low Earth orbit to one-thousandth of what a rocket-based system would cost.
When we'll see a space elevator: While the physics make a space elevator a possibility, according to a recent CNN article, a contest held every year in Mojave Desert has yet to produce a winning prototype that can climb a one-kilometer cable. Regardless, a Washington State-based space elevator company called the LiftPort Group expects the first launch of its first model to take place in 2031.